- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001400000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Hajij, Mustafa (5)
-
Miolane, Nina (5)
-
Papamarkou, Theodore (5)
-
Scardapane, Simone (5)
-
Zamzmi, Ghada (5)
-
Birdal, Tolga (4)
-
Curry, Justin (4)
-
Gao, Yue (4)
-
Kwitt, Roland (4)
-
Maroulas, Vasileios (4)
-
Nasrin, Farzana (4)
-
Rieck, Bastian (4)
-
Schaub, Michael T (4)
-
Wang, Bei (4)
-
Wang, Yusu (4)
-
Lio, Pietro (3)
-
Ramamurthy, Karthikeyan_Natesan (3)
-
Wei, Guowei (3)
-
Bronstein, Michael M (2)
-
Carlsson, Gunnar (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL). TopoBench decomposes TDL into a sequence of independent modules for data generation, loading, transforming and processing, as well as model training, optimization and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBench is its support for transformations and lifting across topological domains. Mapping the topology and features of a graph to higher-order topological domains, such as simplicial and cell complexes, enables richer data representations and more fine-grained analyses. The applicability of TopoBench is demonstrated by benchmarking several TDL architectures across diverse tasks and datasets.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Papamarkou, Theodore; Birdal, Tolga; Bronstein, Michael; Carlsson, Gunnar; Curry, Justin; Gao, Yue; Hajij, Mustafa; Kwitt, Roland; Lio, Pietro; DiLorenzo, Paolo; et al (, Proceedings of the 41st International Conference on Machine Learning (ICML))
-
Papamarkou, Theodore; Birdal, Tolga; Bronstein, Michael M; Carlsson, Gunnar E; Curry, Justin; Gao, Yue; Hajij, Mustafa; Kwitt, Roland; Lio, Pietro; Lorenzo, Paolo_Di; et al (, Proceedings of the 41st International Conference on Machine Learning (ICML), 2024.)
-
Papamarkou, Theodore; Birdal, Tolga; Bronstein, Micheal; Carlsson, Gunnar; Curry, Justin; Gao, Yue; Hajij, Mustafa; Kwitt, Roland; Lio, Pietro Pietro; Di_Lorenzo, Paolo; et al (, ICML: https://openreview.net/pdf?id=Nl3RG5XWAt)
-
Papamarkou, Theodore; Birdal, Tolga; Bronstein, Michael M; Carlsson, Gunnar E; Curry, Justin; Gao, Yue; Hajij, Mustafa; Kwitt, Roland; Lio, Pietro; Di_Lorenzo, Paolo; et al (, International Conference on Machine Learning 2024 (ICML).)
An official website of the United States government

Full Text Available